If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2+3r-7=0
a = 4; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·4·(-7)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*4}=\frac{-14}{8} =-1+3/4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*4}=\frac{8}{8} =1 $
| 5x-14=49 | | 3n/6=17 | | 5x-17=7+3x | | 1.6+4n=1 | | 7x+11=41-x | | -6.2k=-68.2 | | 11p-7=4p+7 | | 3x(2x+1)(x−1)=0 | | y/4+9=−22 | | z/4+9=−22 | | 14(x–5)=13 | | 625=4^t | | t-2.8=5.7 | | t02.8=5.7 | | b^2-9=-10 | | 2x+3x-10=2x+3x-10 | | 5.5=d/8 | | 30.4=3.8a | | -41.8=3.8x | | 5.6=r+3.5 | | 2.3d=49.68 | | X2+5x-84=0 | | 34.9-v=20.1 | | -11=2.7+c | | 34.9–v=20.1 | | 3x+1+2x-2x+7=0 | | 5/6+l=7/6 | | i/3=9 | | Y=×+6,y=2× | | 3x+15=3{-7x+6) | | 4+x2=0 | | -39=-3c |